Product Manager

Posted Sep 4

About Nooks

Imagine the future of work:

  • You can work from anywhere in the world, but still work with your team like you’re sitting side-by-side. A virtual office 💻
  • Your office is smart. It learns how your team works, identifies “winning” behaviors, then replicates them across the team. An AI co-pilot 🤖

Recent advances in large language models and the pandemic-induced shift to remote/distributed work suggest this future is not-so-distant. With all your work happening online instead of in-person, it’s now possible to systematically turn this vast quantity of unstructured data into actionable strategies and feedback loops. We’re making this a reality, starting with sales teams.

Nooks is a smart virtual salesfloor that multiplies reps productivity by bringing realtime collaboration and AI tooling to the team’s sales calls.

The problem

A sales team with a dozen reps does hundreds of customer-facing calls every day. They’re all selling the same product, with the same pitch, to the same personas, answering the same questions - and they learn something new from each conversation. If this information stays siloed, reps will improve slowly. But if learnings are shared across the team, improvements compound. The best reps actually have 3x higher conversion rates on sales conversations compared to their teammates! So tight feedback loops can make a sales team significantly more effective. But today, most sales reps are siloed working at home and the main opportunities they have for feedback are weekly 1:1’s and team training sessions. These methods are old-school, infrequent, and ineffective - feedback loops are effectively nonexistent today.

Our solution

Teams use Nooks to work together throughout the day - our smart dialer automates the manual process of calling and our salesfloor facilitates realtime collaboration on calls. Nooks analyzes the team’s conversations to understand the winning playbooks, then helps replicate these across the team.

  • Reps 3x their sales conversations using the Nooks dialer. It uses AI to accelerate the manual process of calling. Nooks automatically detects answering machines, leaves voicemails, and filters out bad numbers to save reps hours of repetitive tasks
  • Reps work together in Nooks throughout the day (avg ~3hrs/day)! They can listen to each others’ calls, give live advice, and strategize after calls. This dramatically reduces ramp times and improves feedback loops
  • Nooks operationalizes and standardizes winning playbooks across the team. AI insights help managers identify strategies to improve their playbooks. Going forward, Nooks automatically tracks how well the team is following these strategies

Teams that use Nooks often see a 2-3x increase in reps’ productivity within weeks! 📈

Check out an interactive demo of our product here

The role

Our first product manager role is a generalist one but our desired candidate must have a passion for AI-driven innovation and sales. Your responsibilities will include:

  • Partnering with our founders and product engineering team to execute on the delivery of new full stack features across the full sales workflow
  • Owning the tactical work that happens after we ship new features i.e. user research, teaching users, creation of guides, measuring/ensuring we're tracking the right product metrics etc.
  • Scaling new features from the ground-up by translating commercial business needs into technical solutions. You should have some design thinking/design chops as this will entail creating flows, wireframes, prototypes, and high-fidelity visuals for your features
  • A key part of your will will entail understanding user frustrations/pleasures, testing those hypotheses and ultimately translating user needs into AI-driven experiences that augment, enhance and automate manual workflows.

We have an ambitious product vision in a nascent area - AI-powered realtime collaboration - so there are a ton of interesting technical challenges on our roadmap. Here is a non-exhaustive list of the types of problems we’re working on:

1- Concurrency & distributed systems

  • Our smart dialer places calls in parallel and runs a realtime AI model on each call. There are some interesting concurrency problems syncing state between Twilio, our backend, and the frontend, and knowing which calls to connect, which to continue in the background, and when to start the next call.

2- Realtime audio AI & precision/recall/latency tradeoffs (algorithms & models)

  • We use audio data, transcription, silence detection, and several other signals to detect whether a live phone call is a voicemail, a human, or a dial tree. Here, latency is a third factor added to the standard precision/recall tradeoff because it’s important we can detect humans quickly. Our approach involves LLM embeddings, few-shot learning, data labeling, and continuous monitoring of model performance in prod.

3- Latency (infrastructure)

  • If our model took 5 seconds to detect a human on a phone call, the human would hang up. It’s imperative we can detect quickly and that our users can execute calls quickly. There’s latency across the detection pipeline including transcription models, audio models, websockets, Twilio API, database transactions, etc.

4- Smart call funnels & playbooks (data wrangling, backend eng, GPT-3, UX)

  • At what point in the conversation do my reps get stuck? What are the toughest questions that we need to address? Can I “program” a playbook so that Nooks will help my team standardize toward best-practices? We’re using GPT-3 and other LLM’s to turn companies’ mostly unstructured call data into actionable strategies & feedback loops.

5- Conversation embeddings & markov models (ML modeling)

  • What does the anatomy of a call look like? If I say XYZ, what are the different ways the prospect might answer and the probabilities of each? Conditioned on the first half of the call, what do I say next to maximize the likelihood that I book a demo at the end of the call? Can we use LLM’s to generate embeddings of conversations that we can use to cluster similar conversation patterns and predict where the conversation is headed?

6- Integrations

  • Our dialer integrates with customers’ sales engagement platforms. Every new platform we integrate with, that opens up a larger market for our product. When building integrations, we need to make sure they’re robust, reliable, and well-abstracted.

7- Frontend performance

  • There’s a lot going on in the frontend - WebRTC, Twilio, React rendering, websockets, etc. And people use Nooks throughout the workday, so we need to make sure our app is performant across a wide range of devices

Requirements

  • Bachelor's degree in Computer Science, Engineering, or a related quantitative field.
  • 2+ years of prior professional experience developing software for production environments in a hyper-growth/entrepreneurial environment.
  • You break down complicated problems and balance a bias towards action with building for the longer term.
  • You have prior proven ability in setting a product roadmap and product goals via collaboration with cross-functional stakeholders.
  • Nice to have: prior experience launching and iterating on AI-driven products.

The company

We’re growing super quickly (doubling revenue every quarter, currently ~$1.5MM ARR) and we have 50-100 customers who rely on Nooks for their daily workflow/collaboration. We can attribute a lot of this success to the fact that our product can demonstrate a TON of value within a short amount of time. Within a 2-week trial period, we often 2-3x reps’ productivity (measured by the amount of new sales pipeline reps can generate). This led to a 50% trial conversion rate to paid customers last quarter!

We’re a lean team ~20 people with most in the San Francisco Bay Area, but the rest spread across the world in places like New York, Seattle, Spain, Estonia, Costa Rica. We’ve raised $5M from top-tier angel investors and VC’s, and who’ve built/invested in world-class companies like Twitch, Twitter, Lyft, Scale AI, and Outreach. We’re all super passionate about building the future of work, and we’d love for you to join our journey 🚀

We offer competitive compensation because we want to hire the best people and reward them for their contributions to our mission. We pay all employees competitively relative to market. In compliance with pay transparency laws and in pursuit of pay equity and fairness, we publish salary ranges for our open roles. The target salary range for this role is $120,000 - $200,000. On top of base salary, we also offer equity, generous perks and comprehensive benefits.